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Abstract

The paper proposes a Dynamic ResBlock Generative Ad-
versarial Network (DRB-GAN) for artistic style transfer.
The style code is modeled as the shared parameters for Dy-
namic ResBlocks connecting both the style encoding net-
work and the style transfer network. In the style encod-
ing network, a style class-aware attention mechanism is
used to attend the style feature representation for gener-
ating the style codes. In the style transfer network, multi-
ple Dynamic ResBlocks are designed to integrate the style
code and the extracted CNN semantic feature and then feed
into the spatial window Layer-Instance Normalization (SW-
LIN) decoder, which enables high-quality synthetic images
with artistic style transfer. Moreover, the style collection
conditional discriminator is designed to equip our DRB-
GAN model with abilities for both arbitrary style trans-
fer and collection style transfer during the training stage.
No matter for arbitrary style transfer or collection style
transfer, extensive experiments strongly demonstrate that
our proposed DRB-GAN outperforms state-of-the-art meth-
ods and exhibits its superior performance in terms of vi-
sual quality and efficiency. Our source code is available at
https://github.com/xuwenju123/DRB-GAN .

1. Introduction

Artistic style transfer is to synthesize an image sharing
structure similarity of the content image and reflecting the
style of the artistic style. Here, artistic style implies the
genre of paintings by the artist, and the artistic images re-
fer to a set of images created by the same artist, and each
image has a unique character. As shown in Figure 1, style
image 1 and all the style images in style collection 1 are
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Figure 1. Examples of two types of artistic style transfer: (a) ar-
bitrary style transfer and (b) collection style transfer. Note that
the style image 1 and style collection 1 are from the artist Pablo
Picasso, and the style image 2 and style collection 2 are from the
artist Ukiyo-e. Our proposed DRB-GAN experimentally performs
well on both arbitrary style transfer and collection style transfer.

created by Pablo Picasso, in which the style includes color,
brushstroke, form, or use of light. Therefore, an ideal artis-
tic style transfer should be able to synthesize images with
consistent style genre and also take the diverse artworks of
the artist into account.

To facilitate more efficient artistic style transfer, some
prior works have explored arbitrary style transfer [17, 20],
which heavily rely on only one arbitrary style image.
Hence, they are not effective to produce a bunch of re-
sults that reflect the understanding of artistic style charac-
terized by color, scale, and stroke size of the artistic work
set. Some recent efforts on generative adversarial networks
(GANs) [55, 41, 55, 41, 5, 36] have succeeded in collec-
tion style transfer, which considers each style image in a
style collection as a domain. However, the existing collec-
tion style transfer methods only recognize and transfer the
domain dominant style clues and thus lack the flexibility of
exploring style manifold.

In this paper, we propose a Dynamic ResBlock Gen-
erative Adversarial Network (DRB-GAN) for artistic style
transfer. As illustrated in Figure 2, it consists of a style
encoding network, a style transfer network, and a style col-
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lection discriminative network. In particular, inspired by
the ideas of DIN [20] and StyleGAN [23], we model the
“style code” as the shared parameters for Dynamic Convo-
lutions and AdaINs in dynamic ResBlocks, and design mul-
tiple Dynamic Residual Blocks (DRBs) at the bottleneck in
the style transfer network. Note that each DRB consists
of a Convolution Layer, a Dynamic Convolution [3] layer,
a ReLU layer, an AdaIN [17] layer, and an instance nor-
malization layer with a residual connection. Such treatment
is to attentively adjust the shared parameters for Dynamic
Convolutions and adaptively adjust affine parameters for
AdaINs to ensure the statistic matching in bottleneck fea-
ture spaces between content images and style images.

We incorporate a fixed pretrained VGG encoder [43] and
a learnable encoder as feature extractor in the style encoding
network to capture style class-aware feature representation.
The output style class-aware probabilities can be used as at-
tention weights to attend to the style features for style code
recalibration. As the style class-aware attention mechanism
is learned via images in style collections, the output “style
code” captures the underlying discriminative information in
the style image collections. Note that our attention mecha-
nism enforces a better clustering of the “style codes”, which
is different from previous class activation mapping based
methods [25, 53] that aim at highlighting spatial regions.

With the “style code” from the style encoding network,
multiple DRBs can adaptively proceed the semantic fea-
tures extracted from the CNN encoder in the style trans-
fer network then feed them into the spatial window Layer-
Instance Normalization (SW-LIN) decoder to generate syn-
thetic images. Specially, we borrow the idea of local fea-
ture normalization from [28] and design an SW-LIN func-
tion that dynamically combines the local channel-wise and
layer-wise normalization with a learnable parameter in each
decoder block. With the spatial window constraint, our SW-
LIN is able to flexibly shift the mean and variance in the
feature spaces. As a consequence, our SW-LIN decoder can
avoid the possible artifacts and retain the capability to syn-
thesize high-resolution stylization.

As the “style code” captures the underlying discrimina-
tive information in the style encoding network, it is easy to
apply the learned style network on each style image in a
style collection and get a set of style codes. We can apply
the weighted average on the style codes to obtain the “col-
lection style code” and then feed it into the style transfer
network to conduct the collection style transfer. Moreover,
our discriminative network takes several style images sam-
pled from the target style collection of the same artist as ref-
erences to ensure consistency in the feature space. Together
with the perception supervision, our well-designed discrim-
inator provides good guidance for our DRB-GAN to own
abilities for both arbitrary style transfer and collection style
transfer gradually, shrinking their gap at the training stage.

With extensive experiments, we have demonstrated the ef-
fectiveness of our proposed DRB-GAN on both arbitrary
style transfer and collection style transfer.

Several aspects distinguish our work from previous style
transfer models [41, 28, 44]. First of all, our DRB-GAN
introduces a novel prototype for artistic style transfer, in
which “style code” is modeled as the shared parameters
for Dynamic ResBlocks, connecting both the style encoding
network and the style transfer network, to shrink the gap be-
tween arbitrary style transfer and collection style transfer in
a unified model. Second, we introduce a style class-aware
attention mechanism for style code recalibration and then
employ well-designed multiple dynamic ResBlocks to in-
tegrate the style code and the extracted semantic feature to
realize artistic style transfer when generating high-quality
synthetic images. Last but not least, the discriminative net-
work makes full use of style images sampled from the target
collection as a reference which enforces our DRB-GAN’s
ability for collection style transfer. Together with percep-
tion supervision, the ability for arbitrary style transfer can
be well preserved and improved at the training stage.

Both quantitative and qualitative experiments demon-
strate the effectiveness and efficiency of the proposed DRB-
GAN, as well as its superior performance in artistic style
transfer, regardless of arbitrary or collection style transfer.

2. Related Work

Generative Adversarial Networks (GANs) [11] have been
successfully applied to visual recognition [14, 37, 15, 39,
38, 16], object detection [19], image generation [45, 12,
23, 48, 47], image translation [56, 29, 25], shadow re-
moval [6, 46, 52, 51], image captioning [1, 7], etc. These
GAN models are trained to minimize the discrepancy be-
tween distributions of the training data and unobserved gen-
erations. Our GAN model is designed with a special dis-
criminator that judges the generated images by taking simi-
lar images from the target collection as a reference.

Arbitrary style transfer. Gatys et al. [10] for the first
time takes a pre-trained neural network to optimize synthe-
sized images. However, this method inefficiently searches
for a numerical solution in pixel space. To address this,
recent approaches rely on a learnable neural network to
match the statistical information in feature space. The
earliest Per-Style-Per-Model (PSPM) algorithms train a
single model for one particular style image[21]. While
the Multiple-Style-Per-Model (MSPM) algorithms are pro-
posed [50, 49, 2] to use one model for multiple style im-
ages. For instance, the StyleBank [2] uses one single model
to incorporate feature representations of multiple style im-
ages. Recently, the Arbitrary-Style-Per-Model (ASPM) al-
gorithms [32, 4, 30] are proposed to transfer arbitrary new
styles in one unified model. MetaNet [42] introduces a pa-



Figure 2. An overview of the proposed DRB-GAN, which consists of a style encoding network, a style transfer network, and a discrimina-
tive network. The style code modeled as the shared parameter for dynamic ResBlocks is the output from the style encoding network, with
a combination of a pre-trained VGG encoder and a learnable encoder as the feature extractor. A style class-aware attention mechanism
is employed to recalibrate the style code. The final style code is then fed into the style transfer network designed as an encoder-decoder
structure with multiple well-designed dynamic ResBlocks.

rameter network to generate network parameters based on
the style image. AdaIN [17] and DIN [20] methods employ
conditional instance normalization to dynamically generate
the affine parameter in the instance normalization layer. The
CST [44] introduces a unified model for conditional style
transfer. In a different manner, Li et al. [31] utilizes the
whitening and coloring transforms (WCT) on the style fea-
tures. However, these style transfer algorithms consider one
individual style image as one style. This assumption ignores
the concept of the artistic collection of an artist. Instead, our
model takes novel Dynamic ResBlocks to efficiently deal
with the artistic style transfer task.

Collection style transfer. The collection style transfer
methods [8, 5, 35] work on image collections or domains.
They are built upon GANs to map inputs into a different do-
main. We refer to this type of method as a Per-Domain-Per-
Model (PDPM) algorithm. For instance, CycleGAN [55]
takes one generator to translate images into another domain
and uses another generator to translate them back for cyclic
consistency. The AST [41] extends the GAN-based model
for high-resolution artistic style transfer. The CSD [28] in-
troduces a content transformation block to preserve the con-
tent structure in the synthetic images. Recent work [18, 36]
propose to handle the multiple domain translation task. In
contrast, our proposed method models the “collection style
code” in a dynamic way to facilitate efficiency in handling
multiple domains. We, therefore, refer to our mother as a
Multiple-Domain-Per-Model (MDPM) method.

3. Proposed Approach

As illustrated in Figure 2, our DRB-GAN consists of
three networks, i.e., a style encoding network and a style
transfer network to formulate the image generator G, a dis-
criminative network as the discriminator D to ensure the
generated images with desired style consistent with style

images in the collection. Let us use subscripts c to indicate
the c-th style. Given a content image x ∈ X and an arbitrary
style image yc ∈ Y randomly sampled from N different
style image collections, our goal is to transfer the content
image with the generator G to produce a desired synthetic
image x̃c, ensuring a consistent style with the style image
yc via the discriminator D.

3.1. Style Encoding Network with Style Class-
Aware Attention

As shown in Figure 2, we model the style code
as the shared hyper-parameters for Dynamic ResBlocks
which is designed to integrate dynamic convolution
(DConv) and Adaptive Instance Normalization Normaliza-
tion (AdaIN) [17] in a residual structure [13]. The style
encoding network is to generate style code from the style
image for the style transfer network on the content image.

Attention guided feature extractor. We introduce an ar-
chitecture of style encoding by concatenating the features
from a pre-trained VGG encoder and a learnable encoder.
The parameters in the learnable encoder are updated while
those in the VGG encoder are fixed. Since the fixed VGG
network is pre-trained on the COCO dataset [34], it has seen
many images with various textures, thereby it has a global
property and strong generalization ability for in-the-wild
textures. Considering the gap between the COCO dataset
and others, it is difficult for the network with a fixed en-
coder to fit such a complex model. Therefore we introduce
a learnable encoder as complementary to the fixed VGG en-
coder to extract the subtle variations in style.

Inspired by the class activation mapping (CAM) [53], we
take a classification weight to recalibrate our encoded style
feature, denoted as Fs. The attention mechanism is based
on an auxiliary classifier Dcls trained to predict the style
classification probabilitywc, which is used to the likelihood
of the input style image belonging to the cth category. Then,



the style encoding is recalibrated as

sc = ωcFs, (1)

The recalibrated style encoded feature is then fed into the
weight generation module H designed as multi-layer per-
ceptions (MLPs) to determine parameter values for Dy-
namic ResBlocks.
Style code generation for arbitrary style transfer. Given
the recalibrated style encoding, this module is to gener-
ate the parameters as “style code” in dynamic ResBlocks,
which can be written as:

{θcω, θcγ,β} = {Hω(sc), Hγ,β(sc)}, (2)

where sc is the style feature, Hω(·) is a MLP used to gen-
erate filter weights θcω for Dynamic Convolution [3] Layers.
Another MLP Hγ,β(·) creates the affine parameters θcγ,β in
the AdaIN [17] layers.
Weighted averaging strategy for collection style trans-
fer. We introduce a weighted averaging strategy to extend
arbitrary style encoding for collection style transfer. Specif-
ically, we calculate the “collection style code” as a weighted
mean of the “style codes” based on several representative
paintings of the same artist and the corresponding weights
π. For the k-th style image in the collection, the weight πk
is determined by the similarity between the style image and
the query content image. Therefore, we can formulate the
“collection style code” as

{θ̄cω, θ̄cγ,β} = { 1

K

K∑
k=0

πkθ
c
ωk
,

1

K

K∑
k=0

πkθ
c
γk,βk

|c ∼ N},

whereK is the number of style images used to calculate the
mean of the generated weights at test stage, and c indicates
the target style domain. Our experimental results show that
our weighted averaging strategy produces impressive results
on collection style transfer task.

3.2. Style Transfer Network with Dynamic Res-
Blocks

Our style transfer network contains a CNN Encoder to
down-sample the input, multiple dynamic residual blocks,
and a spatial window Layer-Instance Normalization (SW-
LIN) decoder to up-sample the output. With different “style
code” parameters, the style transfer network converts the
content image into different styles.
Dynamic ResBlock. As the core of the transfer network,
each dynamic ResBlock is composed of a Convolution
Layer, a Dynamic Convolution [3] layer, a ReLU layer, an
AdaIN [17] layer, and an instance normalization layer with
a residual structure. It is designed to integrate the advan-
tages of both dynamic convolution and adaptive instance
normalization layer in the residual block. Note that all of

the parameters in layers are dynamically generated from the
style encoding network.
SW-LIN Decoder. The GAN model tends to produce arti-
facts in the generated samples [24], which significantly de-
grades its applications. Many researchers attempt to replace
the instance normalization function with the layer normal-
ization function in the decoder modules to remove the ar-
tifacts. After studying these normalization operations, we
observe that instance normalization normalizes each feature
map separately, thereby potentially destroying any informa-
tion found in the magnitudes of the features relative to each
other. While layer normalization operation normalizes the
feature map together, thereby potentially demolishing each
feature map as the representation of the style. Therefore,
we equip the decoder blocks with spatial window Layer-
Instance Normalization (SW-LIN) function which dynami-
cally combine these normalization functions with learnable
parameter ρ:

SW-LIN(γ, β, ρ) = γ(ρφcsw + (1− ρ)φlsw) + β, (3)

where γ, β are learnable parameters, and φcsw, φ
l
sw are

channel-wise, layer-wise normalized features, respectively.
Specially, the statistic mean and variance are obtained
across a window of spatial location instead of the whole
input tensor h. Formally, we get

φsw =
h− Exi∈sw[h(xi)]√
V arxi∈sw[h(xi)]

. (4)

The SW-LIN function helps our decoder to flexibly nor-
malize the features. As a result, without modifying the
model architecture or hyper-parameters, our SW-LIN de-
coder can remove the artifacts and retain the capability to
synthesize high-resolution stylization.

3.3. Discriminative Network for Arbitrary and Col-
lection Style Transfer

Simply answering a real or fake question is not enough
to provide correct supervision to the generator which aims
at both individual style and collection style. To address this
issue, we introduce a novel conditional discriminator with a
collection of style images, which encourages the generated
images to maintain the texture in any style genre.

As illustrated in Figure 2, our collection discriminator
takes the generated images and several style images sam-
pled from the target style collection as input. The feature
extraction part generates a feature map for each image and
we concatenate them channel-wisely. Then a small network
with three Convolution layers is used to assess the quality
based on the concatenated feature map. Unlike the discrim-
inator of conditional GANs taking a category label as an
additional input besides the generated image, our discrim-
inator takes a collection of style images as a reference in-
stead to ensure the style consistency at the feature space.



Working together with the perceptual supervision (see
Equation 7) between a selected style image and the cor-
responding generated stylization image, our discriminator
provides good guidance to train the generator for both ar-
bitrary and collection style transfer. Consequently, the gap
between the arbitrary and collection style transfer has been
shrunk smoothly at the training stage.

3.4. Objective Functions

The objective loss function L is formulated with adver-
sarial loss Ladv , perceptual loss Lper, and style classifica-
tion loss Lcls as flollows,

L = Ladv + λperLper + λclsLcls (5)

where λper and λcls are the weight parameters.
Adversarial loss Ladv is designed to distinguish between
the patches from synthesized images and those from a group
of style images belonging to the same style collection, i.e.,

Ladv = Eyc,yci∼Y,c∼N [− logD(yc, {yci }Mi=0)]

+ Ex̃c∼G(x),ycj∼Y,c∼N [− log(1−D(x̃c, {ycj}Mj=0))],
(6)

where M indicates the number of style images used by the
collection discriminator at each iteration. in our experiment,
we find setting M = 2 is enough to obtain decent perfor-
mance.
Perceptual loss Lper is employed to compute style losses
at multiple levels and content loss between the style image
and the generated stylization image with a pretrained VGG
network in a way similar to the prior work [33, 9], i.e.,

Lper = λcLc + λsLs, (7)

where the style loss is calculated by matching the mean and
standard deviation of the style features:

Ls = El∼Nl
((µlyc − µlx̃c)2 + (Graml

yc −Graml
x̃c)2),

whereNL is the number of involved layers (in this work, we
use the Relu12, Relu22, Relu33, Relu43 and Relu51 lay-
ers in the VGG network and that of feature maps in the lth
layer). In addition, µ and is the mean and Gram represents
the Gram matrix of the corresponding feature map. We take
advantage of the content loss to preserve the structural simi-
larity between the content image and the synthesized image.
The content loss is the Euclidean distance between the tar-
get features and the features of the output image.

Lc = Ex∼X,c∼N ||φ(x)− φ(x̃c)||, (8)

where φ represents the features of Relu41 layers. At the
training stage, the style image is randomly sampled with
the target domain label. We then transfer the content image
to the target style domain so as to learn all the mappings
across multiple artistic style domains.

Style classification loss Lcls is exploited for the auxiliary
classification Dcls in the style encoding network to ensure
that the style class prediction is correct.

Lcls = Ey∼Y,c∼N (− logDcls(c|yc)). (9)

4. Experiment

Implementation details. Our model is implemented by Py-
Torch [40]. It is trained on 624,777 content images from the
Place365 [54] dataset, and eleven artistic painting collec-
tions from WikiArt [22] database. We adopt Adam [26] as
the optimization solver. The learning rate is set to 0.0001.
We train our model for 600, 000 iterations with a batch size
of 1. The training images are augmented by random rota-
tion and horizontal flipping, and then resized and randomly
cropped to 768 × 768 resolution. Note that during testing,
our model is able to work on images of arbitrary size. We
empirically set λc = 1, λs = 0.02, λcls = 1, and λvgg = 1.

Baseline methods. The goal of our DRB-GAN model is
to generate high-resolution artistic stylizations. We com-
pare our DRB-GAN with state-of-the-art methods, i.e., in-
stance style transfer method like Gatys et al. [10], arbi-
trary style transfer methods including AdaIN [17], CST [44]
and MetaNet[42], and collection style transfer methods like
AST [41] and CycleGAN [55]). For a fair comparison, we
deploy all competing methods for style transfer on images
of size 768× 768, unless otherwise specified. Note that we
use the public released code by authors and train the models
on the same training data.

Evaluation metrics. We use deception rate to evaluate how
well the target style characteristics are transferred to gener-
ated images. The deception rate is calculated as the percent-
age predicted by a pretrained artist classification network
for the correct artist. We also conduct human perceptual
study to assess the quality of the stylization results in terms
of content preservation and style consistency to the target
style.

4.1. Arbitrary Style Transfer

4.1.1 Qualitative Evaluation

Image stylization. We present qualitative results of differ-
ent style transfer methods in Figure 3 for comparison. All
the results are obtained on images of high resolution. The
comparison shows the outperformance of our DRB-GAN
in terms of visual quality. These images in Figure 3 (j) con-
tain no artifacts in the regions, and most importantly, they
preserve the structural similarity of the content images. On
the contrary, the algorithms AdaIN and MetaNet fail to gen-
erate sharp details and fine strokes. We also observe non-
negligible artificial structures in those images obtained by
AdaIN, Gatys, and CycleGAN. And the models CSD [28]



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 3. Performance comparison on stylized results from different models. From left to right are (a) content image, (b) style image, the
results of (c) CSD, (d) AST, (e) Gatys, (f) CycleGAN, (g) AdaIN, (h) MetaNet, (i) CST, and (j) DRB-GAN, respectively.

and AST [41] fail to transfer the Kandinsky style (third row)
to the content image.

Figure 4. Interpolation results between given style samples of
Monet (first column) and van Gogh (last column ). Magnified re-
gions (row 2) show that our method mimics not only colors but
also contours and textures specific to the style.

Style interpolation. To make smooth transitions between
different style images, we operate linear interpolation on
dynamically generated weights. The interpolated weights
{θ̃ω, θ̃γ,β} are obtained as

{θ̃ω, θ̃γ,β} = {αθc1ω + (1− α)θc2ω , αθ
c1
γ,β

+ (1− α)θc2γ,β |c1, c2 ∼ N}
(10)

where α is the interpolation factor between 0 and 1, c1 and
c2 represent style domains. Figure 4 demonstrates a smooth
transition between Monet and van Gogh style with magni-
fied details. Our model captures subtle variations between
these two styles.

4.1.2 Quantitative Evaluation

Style transfer deception rate. To quantitatively measure
the performances of different models, we take the deception
rate metric used by AST [41]. The deception rate is the cor-
rect rate of stylized images that were recognized by a pre-
trained network as the target styles. We take the same way
used in CSD [27] to measure the style transfer deception
rate and report the mean deception rate in Table 1. As we
can see, our method DRB-GAN achieves 0.573, which sig-
nificantly outperforms other baseline methods. As a com-
parison, the mean accuracy of the network on real images
of the artists from Wikiart is 0.626.

Human perceptual study. We also operate human study
on the performance of different approaches. Specifically,

Table 1. Quantitative comparison with state-of-the-art methods.
Average inference time and GPU memory consumption, measured
on a Titan XP GPU, for different methods with a batch size of 1
and an input image of 768 × 768. The column “model” is for the
category of the style transfer method. For the content and style
score, higher values indicate better performance. Scores are aver-
aged over ten different styles.

GPU Human studies
Method Time memory Model Deception Content Style

(sec) (MiB) rate score score

Wikiart test 0.626 - -
Gatys et al. 200 3887 PSPM 0.251 67.1% 0.127

AdaIN 0.16 8872 ASPM 0.061 43.6% 0.019
WCT 5.22 10720 ASPM 0.023 39.2% 0.013

PatchBased 8.70 4159 ASPM 0.063 53.4% 0.043
Johnson 0.06 671 ASPM 0.080 38.5% 0.021

CycleGAN 0.07 1391 PDPM 0.130 43.2% 0.012
AST 0.07 1043 PDPM 0.450 63.9% 0.312

DRB-GAN 0.08 1324 MDPM 0.573 72.2% 0.453

we show each participant with 700 groups of images. Each
group consists of stylized images generated by different
methods based on the same content and style images. We
ask the participants to choose one image that most realisti-
cally reflects the target style. The style score is computed
as the frequency and a specific method is chosen as the best
in the group. The content score is provided by the partici-
pants to evaluate the structural similarity of the content im-
age. Human perceptual studies are reported in Table. 1. We
can see that our method obtains the best scores, proving the
superior performance of our model in terms of both style
transfer and structure preservation.

Speed and memory. The comparison on time and memory
consumption are also listed in Table. 1. We observe that
our approach has comparable speed and modest demand on
GPU memory. Thanks to the weight generation module that
creates a smooth manifold structure, our model can perform
flexible style transfer via interpolation and model averaging,
which significantly improves the efficiency of our model as
a Multiple-Domain-Per-Mode (MDPM) algorithm. On the
contrary, other models lack the capability of performing di-
verse or collection artistic style transfer.



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 5. Ablation study of our DRB-GAN. From left to right are (a) content image, (b) style image, the results of (c) DRB-GAN, (d) w/
layer normalization layer in decoder, (e) w/ instance normalization layer in decoder, (f) w/o VGG encoder; (g) w/o Lcls; (h) w/o Ladv; (i)
w/ AdaIN ResBlk, instead of our Dynamic ResBlk, and (j) are the zoom-in details from three regions marked in the top row, respectively.

Table 2. Quantitative comparison of different methods. SD stands
for style distance metric; DS represents deception score.

Setting Arbitrary Collection style (DS↑)
Style (SD↓) K=2 5 10 20

AdaIN 263.4 0.066 0.045 0.013 0.011
MetaNet 271.8 0.032 0.026 0.023 0.020

DRB-GAN 241.2 0.576 0.580 0.581 0.583

(a) (b) (c) (d) (e)
Figure 6. Performance comparison in terms of collection style
transfer. (a) Style collection, (b) and (c) are the result of our DRB-
GAN, and (d) and (e) are the results of AST.

(a) (b) (c) (d) (e)
Figure 7. Performance comparison in terms of collection discrim-
inator. (a) content/style images, (b) DRB-GAN w/ collection dis-
criminator, (c) DRB-GAN w/ conditional discriminator, (d) CST
and (e) are the zoom-in details from three regions marked in the
top row, respectively.

4.2. Collection Style Transfer

We denote our DRB-GAN model for collection style
transfer as DRB-GAN@K, whereK is the number of paint-
ing images from the same artist used to create the averaged
transformer network. We test a range of K values, includ-
ing 2, 5, 10, and 20. Especially, DRB-GAN is equivalent
to DRB-GAN@1 for arbitrary style transfer. In Table 2,
we demonstrate the deception score obtained with these dif-
ferent K values. A larger K leads to more improvements,

and the largest performance boost comes from K = 2 to
K = 5. The stylizations of DRB-GAN@20 is provided in
Figure 6. As we can see, in comparison to the AST, the re-
sults of DRB-GAN@20 are better with sharper details and
reflect the dominant clue of the artistic style. This also can
be observed from Figure 8 (f) and (j).

4.3. Ablation Study

On arbitrary style transfer task, we perform the ablation
study by removing or replacing each part of the network
to validate the effectiveness of the proposed network and
summarize the results in Figure 5 and Table 3.

As we can see, without using the layer-instance normal-
ization function in the decoder, the model either produce
degraded stylizations when the layer normalization func-
tion is used in the decoder (see Figure 5 (d)), or create ar-
tifacts in the stylizations when using instance normaliza-
tion (see Figure 5 (e)). The results validate our claims that
instance normalization normalizes each feature map sepa-
rately, thereby potentially destroying the information in fea-
ture maps. Note that layer normalization operation normal-
izes the feature map together, thereby potentially demol-
ishing each feature map as the representation of the style.
Training without VGG encoder opts to capture the domi-
nant style clues (see Figure 5 (f)) without subtle details.
Table 3. Quantitative analysis of ablation study. DS: deception
score, CS: content score, and SS: style score.

Method DS↑ CS↑ SS↑
DRB-GAN w/ IN Decoder 0.561 42.1% 0.007
DRB-GAN w/ LN Decoder 0.568 54.7% 0.102
DRB-GAN w/ AdaIN ResBlk 0.552 36.2% 0.006
DRB-GAN w/o VGG Encoder 0.570 66.3% 0.228
DRB-GAN w/o Lcls 0.571 70.2% 0.273
DRB-GAN w/o Ladv 0.542 32.2% 0.001
DRB-GAN 0.573 72.2% 0.383

Moreover, we observe that training without the atten-
tion recalibration module (Dcls) causes slight degradation
on stroke size variations. One possible reason is that the
attention recalibration module works to shorten the gap be-
tween the specific style pattern of one individual style im-
age and the overall style clues of the domain (see Figure 5



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Figure 8. Performance comparison on stylized results from different models trained on images with different resolutions. From left
to right are (a) content image, (b) style image, the results of (c) DRB-GAN×768, (d) DRB-GAN×512, (e) DRB-GAN×256, (f) DRB-
GAN@20×512, (g) CycleGAN×256, (h) MetaNet×512, (i) StyleBank×512, and (j) AST×512, respectively. The number in blue indicates
the size of the smaller edge of the original image.

(a) Content (b) DaVinci (c) (d) (e) Chikanobu (f) (g) (h) Seurat (i) (j)
Figure 9. Qualitative evaluation of our method for previously unseen styles. It can be observed that the generated images are consistent
with the provided target style, (c),(f),(i), showing the good generalization capabilities of the approach. And it can also be observed that our
model shows good performance on collection style transfer, (d),(g),(j).

(d)). Adversarial training is essential to improve the visual
quality of the generated images (see Figure 5 (e)). We suc-
cessfully combine adversarial and perceptual supervision to
obtain high-quality style transfer. Finally, we demonstrate
the advantage of our Dynamic Resblk over the AdaIN Res-
blk (see Figure 5 (f)).

Effect of collection discriminator. In Figure 7, we demon-
strate the effect of our collection discriminator. Comparing
to conditional GAN whose discriminator takes a category
label as an additional input, our DRB-GAN produces bet-
ter stylized images. However, the CST fails to maintain the
style consistency between the synthesized images and target
style images.

4.4. Discussions

Influence of image resolution. Our DRB-GAN is efficient
in high-resolution image style transfer. It is also robust to
perform style transfer on images with different resolutions.
To illustrate the influence of image resolutions, we show the
qualitative comparison in Figure 8. It demonstrates that our
model creates consistent stylizations on different image res-

olutions with slight variations. The results are much better
than other baseline models on the same image resolution.
Effectiveness of unseen styles. We apply our DRB-GAN
to handle the unseen styles for both arbitrary style transfer
and collection style transfer tasks. The visualization results
are provided in Figure 9. Apparently, these results strongly
demonstrate the robustness of our proposed method.

5. Conclusion
We have presented the DRB-GAN for artistic style trans-

fer. In our model, “style codes” is modeled as the shared pa-
rameters, for Dynamic ResBlocks connecting both the style
encoding network and the style transfer network to shrink
the gap between arbitrary style transfer and collection style
transfer in one single model. The proposed attention mech-
anism and discriminative network make full use of style
information in target style images and thus encourage our
model’s ability for artistic style transfer. Extensive exper-
imental results clearly demonstrate the remarkable perfor-
mance of our proposed DRB-GAN model in generating
synthetic style images with better quality than the state-of-
the-art.
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